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Abstract 

The evolution of SARS-CoV-2 virus has resulted in variants likely to be more readily transmitted 

through respiratory aerosols, underscoring the increased potential for indoor environmental 

controls to mitigate risk. Use of tight-fitting face masks to trap infectious aerosol in exhaled 

breath and reduce inhalation exposure to contaminated air is of critical importance for disease 

control. Administrative controls including the regulation of occupancy and interpersonal spacing 

are also important, while presenting social and economic challenges. Indoor engineering controls 

including ventilation, exhaust, air flow control, filtration, and disinfection by germicidal 

ultraviolet irradiation can reduce reliance on stringent occupancy restrictions. However, the 

effects of controls—individually and in combination—on reducing infectious aerosol transfer 

indoors remain to be clearly characterized to the extent needed to support widespread 

implementation by building operators. We review aerobiologic and epidemiologic evidence of 

indoor environmental controls against transmission and present a quantitative aerosol transfer 

scenario illustrating relative differences in exposure at close-interactive, room, and building 

scales. We identify an overarching need for investment to implement building controls and 

evaluate their effectiveness on infection in well-characterized and real-world settings, supported 

by specific, methodological advances. Improved understanding of engineering control 

effectiveness guides implementation at scale while considering occupant comfort, operational 

challenges, and energy costs. 

Practical Implications 

Emerging variants of SARS-CoV-2 have led to increased infectivity by the aerosol inhalation 

mode and increasing infection incidence. Even in the absence of symptoms, people infected with 

respiratory viruses can exhale infectious aerosols that can be inhaled, deposit in the respiratory 

tract, and initiate infection. Indoor environments are the predominant settings for respiratory 

infection transmission because people spend most of their time indoors, and because 

concentrations of infectious aerosols can accumulate, resulting in hazardous inhalation exposure 
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at close-interactive, room (even at distances much greater than two meters), and building scales. 

We illustrate the relative respiratory aerosol transfer and exposure at these scales, provide an 

overview of the scientific basis of engineering controls that can be deployed in buildings to 

reduce transfer between people, and outline priority research directions to guide widespread 

implementation of controls in buildings. 
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Introduction 

When a pathogen has an important or predominant aerosol inhalation transmission mode, as is 

the case for SARS-CoV-2, shared indoor spaces pose elevated infection risk, and controls in 

buildings can mitigate spread 1–5. Emerging variants of the COVID-19-causing SARS-CoV-2 

virus pose increased risk of aerosol inhalation transmission and reduced vaccine effectiveness 6–

10, elevating the importance of non-pharmaceutical approaches in combination with vaccines to 

control the pandemic. Widespread use of face coverings and interpersonal distancing including 

quarantine, isolation, and occupancy restrictions in public and commercial places contributed to 

the control of COVID-19 11–14, and were relied upon to control the 1918–1920 pandemic 15–17. 

But, restricting interactions can cause harm to economic and educational development, and social 

wellness 18–20. Engineering controls—including ventilation (i.e., outdoor air supply), air 

filtration, and air disinfection with germicidal ultraviolet irradiation (GUV)—can reduce risk 

while enabling some in-person, communal activities.  

 

COVID-19 transmission has occurred almost entirely in indoor settings of close congregation 21–

27. Transmission from superspreaders, who may transmit to several or more others throughout 

their infection may drive community spread in public settings 28,29, while settings of small 

gatherings have also facilitated transmission 27. Exhaled aerosols that can carry infectious 

viruses, remain in indoor air for minutes to hours, and can rise to high concentrations in spaces 

without an adequate combination of ventilation and filtration. Although transmission risk is 

greatest between those interacting at close range, there can be substantial infectious aerosol 

transfer between people co-occupying an interior space even for a few minutes at nominally 

acceptable spacing (e.g., >2 m) 30. Despite their potential for societal health and economic 

benefits, ventilation and filtration standards for non-healthcare settings are not usually designed 

to control airborne infection 31. Instead they have focused on reducing occupant dissatisfaction 

with odor and thermal conditions 32,33. Efforts to define a sufficient level of ventilation for 

infection mitigation are complicated  by the range of effectiveness reported in the few available 

studies, and the inherent limitations in study methodology 34,35. Despite these uncertainties, 
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engineering interventions were recommended 1,3,30,36–43 and have been implemented in varied 

combinations in many buildings during the COVID-19 pandemic.  

 

Engineering controls provide several key benefits. First, they are not reliant on knowledge of 

occupant infectious status as required for quarantine, isolation, and contact tracing. This is 

helpful because asymptomatic and pre-symptomatic COVID-19 cases were shown to shed at 

least as much virus as symptomatic cases and were estimated to contribute to a majority of 

transmission events 44–49. Second, engineering controls reduce infectious aerosol exposure that 

can prevent infection, reduce severity of disease 50, and possibly reduce subsequent propagation 
51. Third, engineering controls provide some protection without having to address opposition to 

requirements such as masking or vaccination. Meanwhile, opposition to engineering controls 

centers on cost and energy use, and any individual control measure cannot achieve the benefits of 

an integrated set of controls that include the wearing of well-fitted masks and vaccinations for 

any who are able to access them once they are available. Fourth, increasing ventilation and 

improving filtration each bring substantial additional benefits, with ventilation improving 

cognitive performance 52–54 and reducing building-related illness and sick leave 55,56, and 

filtration reducing a variety of health risks from exposure to fine particulate matter 57–59. Fifth, 

infection resilience conferred through built environments helps address inequities in hazardous 

indoor exposures, and reduce inequalities in disease resulting from inequitable access to testing, 

personal protective equipment (PPE), or vaccination 60–64. The reliance on school and business 

closures for infection control presents the greatest hardship to public-facing workers and 

communities who experience health, educational, and economic disadvantages 65. Sixth, the 

societal benefits from infection control are expected to greatly outweigh the costs of 

implementing infrastructure upgrades 31. 

 

Despite uncertainties along the aerosol infection pathway related to variations in the quantity of 

infectious pathogens shed into different aerosol sizes, sites of infection within the respiratory 

tract, variations of these factors by pathogen, stochastic effects, the physical dynamics of 

aerosols in buildings, and heterogeneity in population susceptibility, it is clear that viral aerosols 

play a driving role in respiratory infection, including for SARS-CoV-2 1,66. A recent study that 

detected infectious SARS-CoV-2 in fine aerosols (≤5 µm) from the exhaled breath of COVID-19 

cases, showed that, controlling for viral load in upper respiratory mucosa, viral genome shed into 

aerosols was over an order of magnitude larger among alpha variant versus original “wildtype” 

infections 67. This suggests that the SARS-CoV-2 virus is evolving to become more transmissible 

by the airborne mode, underscoring the importance of tight-fitting masks and respirators and 

airborne contaminant removal strategies in buildings. Research supporting the implementation 

and evaluation of engineering control measures on human infection and health outcomes is 

urgently needed in response to emerging SARS-CoV-2 variants and supports a better empirical 

understanding of the potential to reduce risk indoors. In recognition of the simultaneous and 

urgent need to reduce carbon emissions to slow climate change, the energy required to provide 

increased ventilation and air cleaning 68,69 motivates research to identify efficient practices that 

confer substantial infection control benefits 70–72. To support widespread implementation of 

engineering controls, this manuscript presents a non-exhaustive summary of literature reporting 

intervention effectiveness, considered within a framework of exposure scales and settings, and 

proposes critical research aims and methods. 
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Sources, sizes, and transport of infectious aerosols 

Infectious pathogens can be transferred between people in respiratory fluid via small, inhalable 

aerosols (≤100–200 µm in diameter) and drops (>100–200 µm) that can deposit on facial mucosa 

but cannot be inhaled 73. Drops follow ballistic trajectories with momentum, often move 

independently of bulk air currents, and rapidly fall out of the air by deposition on surfaces. 

Particles with diameters below a few micrometers generally move with bulk fluid streamlines 

and have low enough deposition velocities that they mix similarly to gases, and are often 

removed from a room by ventilation and other processes faster than deposition 74. Aerosols up to 

20–30 µm have low enough settling velocities that they remain airborne for several minutes or 

more and mix throughout an indoor space, driven by thermal plumes, HVAC air supply and 

other mechanisms of indoor airflow 73. Particles as large as approximately 60 µm can be kept 

aloft with typical room air speeds of 1–10 cm/s, and particles up to ~300 µm experience 

balanced flow conditions with air currents reaching 100 cm/s 75.  

 

Exhaled breath aerosols and drops containing water, salts, proteins, microbes and sometimes 

viruses are generated from several locations within the respiratory tract, resulting from the 

biophysics of breathing, vocalizing, or coughing 73,76–80. Based on a review of published studies, 

during respiration, a distribution of aerosols with number concentration modes <1 µm in 

diameter are generated by the breaking of films that form in the lung airway reopening after 

closure 75,81,80. Shear forces and vibrations during vocalization generate aerosols from the throat 

region (larynx), with a larger size distribution and mode size of approximately 1 µm (ibid). 

Particles are also generated from the mouth with modes of 10 and 96 µm for vocalization, and 11 

and 128 µm for coughing (ibid). In some studies, vocalization and coughing increased the 

average generated particle size by up to ten-fold 78,82. “Speech superemitters,” for reasons that 

are largely unknown, were shown to generate ten times more respiratory aerosol while talking 

than the study population mean (N=48) 83. Heavy breathing (e.g., with physical exertion), speech 

loudness, speech articulation, coughing, and singing have been observed to generate more 

aerosol particles than tidal breathing, likely due to changes in physical processes and greater 

expiratory volume 83–86. Presumably, laughing could present a different profile, though we are 

not aware of any studies quantifying emissions from this expiratory mode. Sneezing can release 

respiratory aerosols 87, and may be associated with some respiratory infections, however, was 

rarely observed in over 200 half-hour observational sessions from symptomatic influenza cases 
88.   

 

Virus-containing aerosols also can result from defecation and be spread via toilet use and from 

drain-waste vents. Wastewater sampling has been widely used as a research tool for population 

surveillance of SARS-CoV-2 infections 89,90. SARS-CoV-2 aerosols have been recovered in 

relatively high quantities from toilet rooms in hospital settings 91,92. Viral aerosolization from 

apartment building waste vents was epidemiologically implicated in the transmission of SARS 
93,94 and SARS-CoV-2 95. Vomiting is another potential source of infectious aerosols 96. 

 

Studies of exhaled breath from infected humans are necessary to understand the quantity of 

pathogens released into aerosols of various sizes. The published body of such research over the 

last decade includes samples from several hundred individuals. These studies have reported 

higher pathogen loads in the aerosol fraction ≤5 µm in diameter compared with larger aerosols 
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97. Influenza A and B viral genome copies (an indicator of the number of pathogens present) 

quantified from 218 exhaled breath samples from 142 symptomatic cases from a university 

campus community had a geometric mean three times higher in aerosols ≤5 µm versus >5 µm 88. 

Genome copies were correlated with infectiousness measured by quantitative culture (Spearman 

correlation coefficient 0.34, p <0.0001). No association was found between viral quantity shed 

into exhaled breath aerosols (determined by Gesundheit-II bioaerosol sampling) and into upper 

respiratory mucosa (determined by nasopharyngeal swab samples), suggesting distinct 

compartments of infection in the upper and lower respiratory tract. A study of exhaled breath 

among a smaller population of symptomatic cases showed over eight times more viral genome in 

the fine versus coarse fractions (95% confidence interval 4.1–19) 98. A similar pathogen load 

breakdown was observed in cough aerosols of influenza cases 99: 65% of all influenza genome 

copies in the collected aerosol sample were recovered from particles ≤4 µm and almost twice as 

much was recovered from particles <1 µm compared with those 1–4 µm in diameter. A study of 

SARS-CoV-2 aerosols in exhaled breath during singing and talking from 22 asymptomatic to 

febrile COVID-19 cases detected viral genome in 59% of exhaled breath samples, with less 

shedding during breathing than talking or singing and a predominance in fine aerosol (≤5 µm) 
100.  A study of 49 SARS-CoV-2 seronegative cases detected RNA in 45% of fine and 31% of 

coarse samples, and infectious virus in two fine aerosol samples despite the use of masks 67. A 

paired analysis of masked and unmasked aerosol samples in this study showed that loose-fitting 

face masks reduced SARS-CoV-2 RNA in fine aerosol by 48% (95% CI 3%-72%) and in coarse 

aerosol by 77% (95% CI 51-89%). Given these findings, the authors emphasize the importance 

of tight-fitting masks, respirators, and air cleaning strategies, especially for protecting public-

facing employees and those in crowded settings. The site of viral replication in the respiratory 

tract is expected to influence the particle sizes generated and lend to some variation in shedding 

sizes that could vary throughout the course of infection and between infection instances. 

However, there is substantial evidence that fine aerosols commonly carry infectious material that 

poses transmission risk via inhalation. 

 

The size distributions relevant to airborne exposure assessment are those that result when 

infectious aerosols shrink by evaporation as they move from saturated conditions in the 

respiratory tract to indoor air with lower relative humidity 96,101–104. Under common indoor 

conditions of <60% RH, expired droplets rapidly evaporate to a final diameter that is 

approximately 20–40% of the starting diameter in the environmentally equilibrated form, 

sometimes referred to as droplet residua or droplet nuclei 75,101,105,106. Aerosol droplet transport 

and diffusion distance after exhalation depends on the momentum (increasing from breathing to 

sneezing) of the multiphase turbulent cloud of exhaled air in which the aerosols are suspended 

and scales with the time from exhalation. The cloud decelerates and the aerosol concentration 

decreases as its growth entrains slower-moving ambient air 107–109. Inhalation doses, therefore, 

decrease with distance from the infected person 110 and are dominated by aerosols <50 µm 

compared with larger aerosols and ballistic drops >100 µm, unless the source was very close 

while talking (≤0.5 m away) or coughing 111. Once the cloud’s velocity is comparable to the 

velocity within the room (typically at <2 m), the ambient air currents dominate transport of the 

infectious aerosols 107–109.   

 

The sites of infectious aerosol deposition along the respiratory tract can influence the risk of 

infection and severity of illness. Larger aerosols deposit in the upper respiratory “head region” 
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and cannot reach the lower respiratory tract. Thoracic aerosols (≤10–15 µm) can deposit above 

and below the larynx. Respirable aerosols (≤2.5–5 µm) can deposit throughout the respiratory 

tract and more readily than larger aerosols in the lung 73,75,80,112,113. Mycobacterium tuberculosis 

must reach lung alveoli to initiate infection 114. Influenza poses increased risk of infection and 

severe disease at lower doses when depositing in the lungs compared with the upper respiratory 

mucosa 73,115, and such anisotropic transmission may describe other infections. Although it 

appears that SARS-CoV-2 infection is possible throughout the respiratory tract based on the 

presence of relevant receptors 116, the relative sensitivity to infection at different sites is unclear. 

An experimental challenge study of SARS-CoV-2 showed that cynomolgus macaques exposed 

to viral aerosols were more likely to develop fever and severe respiratory disease compared with 

those exposed to drops in the upper respiratory mucosa 117. The effect was not observed in rhesus 

macaques, but nonetheless, suggests the possibility of aerosol inhalation as a sensitive mode of 

infection and important for control.  

 

There are few field studies that have measured size-resolved pathogenic aerosols in buildings. 

An indoor air sampling campaign at an apartment showed a predominance of infectious 

influenza A in sampled aerosols with diameters ≤1 µm at 2 and 4 m from a bedridden case, with 

some infectious virus detected in particles larger than 1 µm at 1.2 m away 118. Infectious SARS-

CoV-2 aerosols with diameters <1.0 to 10 µm were recovered at 2 and 4.8 m away from 

hospitalized COVID-19 cases 119. Other field studies have recovered viral genomic material in 

aerosols from a variety of settings. SARS-CoV-2 aerosols were detected in patient, staff, and 

public areas in hospitals 92; SARS-CoV-2 120 and influenza A 121 in patient rooms; influenza A in 

a health center waiting area, a day-care center, and in airplanes 122; adenovirus and influenza A in 

a pediatric ward 123; influenza A in an emergency room 124; adenovirus, respiratory syncytial 

virus, and influenza A in metro rail cars 125; and influenza A in an elementary school 126. 

 

In their seminal book on infection control, Riley and O’Grady hypothesized that pathogens with 

an important aerosol transmission mode, such as tuberculosis, evolved a level of resistance to 

infectious decay during residence time in the air between hosts 127. Laboratory quantification of 

infectious decay in rotating drums injected with aerosols containing influenza viruses, 

coronaviruses, and other viruses demonstrated infectious half-lives over an hour 128–130. 

Psychrometric features could play a role in determining not only the fate of aerosol deposition 

and size change due to evaporation, but also aerosol infectious decay. A population-based study 

in Buenos Aires showed a correlation between reductions in relative humidity to approximately 

60% and increased risk with a nine-day lag 131. This relationship was only detected during the 

winter and did not rule out behaviors related to time spent indoors and indoor air ventilation. 

Despite this and other suggestions of increased viral aerosol decay in intermediate humidities 
101,132–134, a study that aerosolized influenza virus from human respiratory tract cell lining fluid 

showed no effect of humidity on infectiousness during the course of an hour 135. A potentially 

protective effect of this lining fluid (the main component of exhaled breath aerosols) on 

infectious decay may be related to its chemical composition, compared with lab media used in 

other studies 136. Simulated saliva aerosols suspended in a rotating drum were shown to decay 

faster at 70% versus 20% RH at temperatures of 10–30oC; however, this effect was not clear 

under increased ultraviolet-B irradiance simulating sunlight 137. A commonly cited infectious 

decay rate of 0.63 h-1 comes from a study that aerosolized SARS-CoV-2 using non-human-based 

media in an aerosolization procedure likely to be more stressful than natural processes, leading to 
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potential overestimates when generalizing to human generated exhaled aerosol 130. Yet even if 

infectious decay were to occur at such a rate, it would represent a relatively small portion of total 

removal unless removal by ventilation is very low. Low relative humidity may be more likely to 

affect transmission by decreasing mucociliary clearance and innate immune function, as has been 

observed at 10% compared with 50% RH in mice 138. Yet, intentionally increasing humidity 

without careful oversight increases risks of dampness, mold, and other allergen exposures that 

are well established contributors to respiratory disease 139.    

Critical scales and settings  

The application and assessment of infectious aerosol controls indoors can be considered at three 

transfer scales: a) close-interactive, b) room, and c) building (between-room). Table 1 describes 

each scale and corresponding engineering controls. Administrative controls for all scales of 

transfer include pre-entry screening, face mask or respirator use as source control and PPE, 

activity limits (e.g., restricted loud speech, singing, or exercising), and frequent cleaning of 

common touch surfaces. Distancing tailored to setting-specific activities helps reduce close-

interactive transfer. Limits to co-occupancy time, and cohort separation reduce room scale 

transfer. Distances 1–2 m have been commonly used to differentiate close- and long-range 

transmission along a continuum 140, related to likelihood of exposure to drops and aerosols. 

Features of close-interactive contact related to elevated airborne transmission have been 

described elsewhere 141,142. To differentiate between close-interactive—“garlic breath” scale of 

exposure 143—and room scale exposure we define close-interactive aerosol transfer within 1–2 m 

during a duration consistent with the US CDC’s definition of contact, which is 15 min or more 

within a 24 h period 144. A similar distinction in aerosol transfer exposure by proximity has been 

suggested by Nazaroff 75. Aerosol transfer from infectious to susceptible individuals within 

rooms is relevant when transport occurs much faster than deposition, removal, or viral 

inactivation. A modelling study predicted that the predominant scale of respiratory infection 

transmission can switch between close-interactive and longer-range, within-room exposures as a 

function of variation in infectious aerosol size, interpersonal distance, and exposure time 145. 

Increasing interpersonal distance within a room reduces the proportion of close-interactive 

transfer and increases the proportion of room scale transfer which is often more easily mitigated 

by ventilation, filtration, and GUV. 

 

Table 2 lists features of settings that pose elevated risks owing to higher emission activities, 

limits on the applicability or ability to enforce administrative controls, or the likelihood that 

existing facilities have the equipment needed for engineering controls. Dining and sporting 

activities are less amenable to face mask wearing. Settings with higher occupant density, greater 

magnitude of interaction, and activity level present greater challenges relative to those with 

lower density and stationary occupants. Studies have implicated specific settings for SARS-CoV-

2 and other respiratory infection transmission. These include school lunchrooms, restaurants, and 

small, private gatherings 25,146; classroom learning 147; a variety of occupational settings and 

worker dormitories 24; meat processing 148; religious services 149,150; public entertainment 151; 

buses 152,153; nursing homes 154; and fitness centers 155–159. Residential settings, which typically 

foster extended exposure at close proximity, lend to transmission risk. A study of over 33,000 

laboratory-confirmed influenza hospitalizations over two influenza seasons across the USA 

showed that having ≥5% of people living in crowded households—defined as more than one 
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person per room—was associated with a 17% (95% CI 11-23%) increase in influenza 

hospitalizations, suggesting a possible role of within-household transmission in crowded 

environments 160. A meta-analysis of household contacts estimated that spouses had a SARS-

CoV-2 transmission rate of 38% (95% CI 26–51%) compared with 18% (12–25%) for other 

household contacts 161. Overall, the meta-analysis estimated within-household SARS-CoV-2 

transmission risk of 16.6% (95% CI 14.0–19.3%) 161. Settings with immunologically susceptible 

populations and extended contact times include senior housing and assisted living communities, 

detention centers, homeless shelters, and healthcare settings. These settings may commonly have 

limited ventilation and air cleaning. Healthcare settings represent specialized environments with 

higher risks of exposure among and between patients and staff owing to increased sources of 

infectious aerosol 162–164. Protection of immunologically susceptible patients is a priority and risk 

among staff is elevated with inadequate PPE and engineering controls 43,165–169. Because of their 

unique exposures and elevated ventilation and infection control standards, healthcare settings are 

not a focus of this paper; however, many of the same controls applied in healthcare could be 

applied to other environments.  

 

Community-level settings are likely to contribute to population transmission risk in unequal 

ways and this should be considered when assessing differential population exposure burdens in 

various settings. A study of US county level data showed that the effect of distancing policies on 

reducing COVID-19 cases and mortality was lower among communities of color, those with 

lower incomes, and those with higher levels of household crowding 170, potentially related to 

cumulative exposure burdens related to built environment factors in occupational and residential 

settings. This is despite data that shows increased adherence to masking and physical distancing 

among Black and Hispanic communities in a national US survey, after controlling for 

socioeconomic status 62. Comprehensive, community-level prioritization of venues by risk level 

can be supported by risk estimation tools. For the purpose of minimizing overall spread and 

health impacts, priority intervention settings are those that serve as hubs for community 

transmission and those with populations that have higher risk of severe disease and adverse 

outcomes when infected.  

Modeling risk and protective effects 

Numerous tools have been developed to estimate SARS-CoV-2 aerosol exposure, infection risk, 

and the effect of controls in various indoor settings (Appendix 1). The Wells-Riley equation is 

often used to estimate risk of transmission at the room scale, where inhalation exposure and risk 

increase with the strength of infectious dose generation and decrease with removal via dilution 

ventilation and other mechanisms. The Wells-Riley equation is, 

𝑃 =  
𝐷

𝑆
= 1 − 𝑒𝑥𝑝 (−

𝐼𝑝𝑞𝑡

𝑄
),          (1) 

with P probability of infection, I number of infectors shedding pathogens into aerosols, q 

quantum generation rate, p pulmonary ventilation rate, t time sharing the air of an indoor space 

(assuming an evenly mixed environment), and Q uncontaminated air supply rate 171. The 

quantum generation rate, q, is the generation rate of inhalation doses, with one quantum defined 

as the dose that will cause infection in 63% of those exposed. It is estimated using data from 

outbreaks, based on the duration of shared air exposure between defined numbers of infectious 

and exposed individuals, the rate of removal by dilution or other means, and infection rates 
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among the total number of exposed susceptibles. Risk responds stochastically with a Poisson 

distribution proportional to the cumulative exposure to infectious aerosols. An infectious dose 

may be greater than a single, inhaled pathogen over the exposure period, but the likelihood of 

infection responds stochastically as though it were a single dose 172.  

 

Rudnick and Milton built on the Wells-Riley equation by proposing the use of CO2 concentration 

as a marker of how much air being inhaled in a room is composed of exhaled breath 173. This 

works given that exhaled breath is the predominant source of CO2 in indoor environments with 

vented combustion sources (e.g., cooking). Their rebreathed-air equation is, 

𝑃 =  
𝐷

𝑆
= 1 − 𝑒𝑥𝑝 (−

𝑓𝐼𝑞𝑡

𝑛
),          (2) 

with n people sharing the air, and rebreathed-fraction 𝑓equal to the CO2 concentration in the 

room minus the CO2 concentration outdoors divided by the CO2 concentration of exhaled 

breath—approximately 38,000 ppm at low levels of exertion 173—integrated over the exposure 

time. Aside from providing direct estimates of exposure to exhaled breath (not accounting for 

removal via filtration, inactivation, and deposition) in a well-mixed room, and providing a 

solution for non-steady state conditions, the rebreathed-air equation can be used with data 

collected from CO2 sensors, thus avoiding the challenges involved with estimation of room 

ventilation over time. Given a certain number of people occupying an indoor environment of a 

specified volume, the CO2 concentration is a function of the rate of ventilation as outdoor air 

with lower CO2 replaces indoor air containing exhaled breath. The transport of particles ≤3.5 µm 

has been shown to be well approximated by tracer gas 110. Although larger aerosols were not 

tested in that study, their dispersion would not typically be well-mixed and are likely to correlate 

less strongly with CO2 concentration. The magnitude of this limitation is unlikely to negate the 

use of the rebreathed-fraction for practical, public health risk assessment in well-mixed settings, 

especially given the known importance of infectious aerosols ≤5 µm for transmission. 

Application of well-mixed, Wells-Riley based approaches to differentiate between close-

interactive and room scale exposures has yet to be well explored 75. Existing estimates of quanta 

generation rates are often given as population averages, yet they can vary widely between 

infector-susceptible pairs 174,175. Precautionary approaches should consider superspreader 

scenarios as a function of supershedding, immunologic susceptibility, and elevated exposure to 

pathogen-laden air. 

 

The Effective ReBreathed Volume (ERBV) builds on the rebreathed-fraction concept in a well-

mixed space and provides a metric for characterizing infectious aerosol exposure as a result of 

transfer and removal processes occurring for aerosols of different sizes at various distances from 

a source 176. ERBV characterizes exposure related to the physical transport of aerosols. This 

enables estimation of the influence of distance and filtration for aerosols across the range of 

relevant aerosol sizes. Improved knowledge of immunologically vulnerable sites along the 

respiratory tract (i.e., head, thoracic, and lung regions) by pathogen informs the risk implications 

of inhalation exposure of different sizes. Estimation of a person’s cumulative inhalation exposure 

to infectious aerosols of various sizes would support improved assessment of aerosol infectious 

dose in well-characterized transmission scenarios. This would help with translating quantum 

generation rates into infectious aerosol copies per infectious dose, thus enabling aerosol 

sampling campaigns from human sources and/or indoor air to directly estimate risk in an indoor 

environment with known removal properties.  
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Insights from an aerosol transfer model in an office 

To elucidate the importance of scale, we provide a quantitative example of aerosol transfer 

between an infected worker and susceptible workers at the three scales of exposure in an office 

setting (Figure 1; schematic in Figure A1). The simulation used CONTAM models of a single-

zone (SZ) HVAC system serving a 92.9 m2 room with an infected person, and a multi-zone (MZ) 

system serving 929 m2 total floor area with at least two zones, one of which being the 92.9 m2 

infector room. Models were non-steady-state and the exposure lasted for one hour. All the spaces 

had 3 m tall ceilings and the HVAC systems supplied 0.47 L/s/m2 (1 cfm/ft2) with 10% outdoor 

air, corresponding to 7.5 L/s/person of ventilation and 15 m2/occupant. Based on published data 

of exhaled breath aerosol size distributions, knowledge of the lung as a sensitive site for 

respiratory infection, and some uncertainty about sites of infection initiation along the respiratory 

tract for different infections, respirable aerosols ≤5 µm were included as relevant for infectious 

aerosol transmission along with thoracic aerosols ≤10-15 µm 73,102,82,177. These sizes were 

environmentally equilibrated, achieved by taking 40% of emitted diameters 75 (listed in 

Appendix 2). Exploring this range of aerosol sizes allowed the model to show a quantitative 

estimation of relative exposure risk across scales of aerosol transfer. Despite the majority of 

exhaled breath and speech aerosol particles being ~1µm 82,83, and others showing a majority of 

influenza and SARS-CoV-2 virus in exhaled breath aerosols ≤5 µm 67,88,98,100,  a single particle at 

10µm or larger could potentially contain a greater viral load. It is unclear whether smaller 

aerosol particles might deliver fewer defective virions or facilitate binding to host receptors more 

readily than larger ones, but these possible explanations have been suggested for the detection of 

culturable SARS-CoV-2 in fine aerosol samples despite low viral load 67.   

 

Close-interactive exposure is estimated as the aerosol number concentration at inhalation by a 

susceptible person whose head is within the same 1 m3 well-mixed subzone with the infected 

occupant. That subzone mixes with the surrounding room at a rate of 360 h-1, corresponding to a 

mean air speed of 0.1 m/s. Mean exposures are considered at room scale, for susceptibles outside 

of the close-interactive zone within the infector room (Inf. room), with SZ or MZ systems, and at 

building scale outside the infector room served by the MZ system. If occupants are moving 

around the space, then local concentration extremes that can occur within a room are of less 

relevance as air becomes more well-mixed and occupants are exposed to air throughout the 

space. The effects of cloth face masks worn by both the infector and the susceptibles, are 

estimated in the simulation from size-resolved intake and out-flow removal efficiencies 

corresponding to a MERV 8 filter, consistent with published data on cloth masks 178,179. Out-flow 

efficiency considered aerosol sizes at emission, while intake efficiencies assumed aerosol sizes at 

equilibrium, which made breath aerosol filtration efficiency higher for exhalation than for 

inhalation. Additional sources of aerosol removal are dilution by outdoor air ventilation, 

deposition in HVAC ducts and on surfaces in the simulated rooms, and filtration by MERV 13 

HVAC return filters (this example uses MERV 13, although >MERV 13 would be a reasonable 

approach also). The values of all model parameters and the differential equation that represents 

the material balance in the SZ infector room (as an example) are provided in Appendix 2. 

Results, shown in Figure 1, are presented as the ratios of hourly aerosol concentrations in the 

infector room and other rooms (building scale) relative to exposure concentrations within the 

close-contact sub-zone. The hourly, integrated number and volume distributions are shown in 

Figure A2 (Appendix 2).  
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The model represents an approximation of respiratory aerosol transfer. Aerosol number 

concentrations were highest at close-interactive scale (i.e., within the infector subzone), lower at 

room scale, and lowest at building scale (Figure 1; Figures A1, A2). It is possible that exposure 

could be even higher within the infector subzone compared with the other scales, depending on 

proximity of interaction of the individuals within the 1 m3 subzone and the dynamics of the 

exhalation plume from the infector which was not modelled in this scenario. Mask use among the 

infector and susceptibles reduced close-interactive exposure by 53, 97 and 98% for equilibrated 

particles with diameters of 0.3, 4.8, and 14.4 µm, respectively. Exposure reductions attributable 

to masking were similar for room and building scale transfer. Compared with the infector 

subzone, exposure concentrations in the infector room with an SZ HVAC system, without 

masking, were reduced by 79, 88, and 94% of those that occurred for 0.3, 4.8, and 14.4 µm, 

respectively. With masking, exposure was reduced further, to 90, 99.7, 99.9% of unmasked 

subzone levels. Compared with SZ, exposures in the infector room served by MZ HVAC were 

lower at the smallest particle sizes due to a greater supply of uncontaminated recirculated air, 

assuming no infectors in the connected spaces. Building scale exposure with the MZ system was 

dramatically lower than the other scenarios and declined faster as aerosol size increased. Other 

engineering controls could be applied to reduce exposure at the three scales (Table 1).  

 

 
Figure 1. Relative inhalation exposure attributed to aerosols at different exposure scales 

compared with close-interactive exposure in the SZ Inf. Room. SZ Inf. Room = Single-zone 

HVAC system serving 93 m2 with an infector in the room; MZ = mixed-zone HVAC system 

serving a total 929 m2 with infector in the room; dp = aerosol diameter; OA = outdoor air. 
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Intervention points to reduce infectious aerosol transfers 

To support the prioritization of research needs, this section summarizes what is known about the 

efficacy of interventions to interrupt transfers of infectious aerosol. Source control measures and 

use of PPE are important measures in combination with the engineering controls and a brief 

description is included in Appendix 3.  

I. Close-interactive scale 

As illustrated in Figure 1, exposure at the close-interactive scale contributes the highest risk of 

aerosol transfer due to the contributions of concentrated aerosols close to the source and the 

possibility of large drop sprays. After more than a year of public information campaigns about 

transmission risk during close contact, there is broad awareness of the risk posed at this scale. 

Masking and distancing remain important controls at this scale, while airflow management and 

air cleaning at close range face implementation challenges at the population level.  

Barriers 

Although empirical effectiveness data are limited, a review of existing literature suggests that 

physical barriers such as plexiglass shields confer protection from ballistic drops and larger 

aerosols at close-interactive scale 180, and may also help encourage physical separation between 

people. Physical barriers have been suggested in hospital settings to reduce between-patient and 

patient-visitor transfers and studied using computational fluid dynamics and tracer gas analysis 
181,182. Plexiglass-type shields deployed widely throughout an indoor space, such as between 

student desks in a classroom, may reduce exposure between adjacent individuals by increasing 

the distance for an aerosol to travel between people resulting in greater dilution potential. But 

they can also interrupt mixing and dilution ventilation, potentially leading to increased 

concentrations and exposures at some locations within room 180. Rapid exhaust of air—at 114 

L/s—above a fog-generating manikin reduced exposure between pupils seated next to each other 

at partitioned desks, however, the effectiveness of partitions under realistic classroom ventilation 

and air flow conditions may be low and could increase exposure due to interruption of dilution 

via air flow and mixing 183. A thermo-fluid simulation using CO2 tracer data to mimic the 

conditions of an office environment with plastic sheeting as shielding between groups of desks 

found that shielding likely reduced delivery of clean supply air to some spaces, leading to 

elevated risk 184. A large-scale survey of pre-kindergarten through high school environments 

showed that classroom desk shields between pupils were associated with a 12% increase in odds 

of a positive COVID-19 test, and 29% increase in odds of COVID-19-like illness, after 

controlling for county infection incidence, and individual and household covariables 185. 

Additional information about airflow, in this study or other classroom exposure scenarios, 

including where air enters and leaves the spaces and their interaction with barrier size and shape 

could help elucidate potential barrier-mediated airflow dynamics associated with risk and inform 

specific barrier use strategies to reduce risk. Settings where clean airflow delivery is not hindered 

by barriers such as at checkout registers in large market environments, could take advantage of 

protective effects of barriers without negative consequences.  
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Airflow management 

Airflow management strategies to reduce direct transfer of infectious aerosol at the close-

interactive scale include delivery of clean air directly to the breathing zone and establishment of 

beneficial airflow patterns. Directing expiratory air volumes toward upper-room GUV, into 

unoccupied volumes such as upper air spaces in high-ceilinged warehouses, or toward exhaust 

registers for in-duct cleaning and/or exhaust to outdoors can reduce between-person transfer. In 

general, mixing air improves performance of GUV 186. Directing air across a room would risk 

increasing the delivery of contaminated air from an infected person towards others in the space. 

The introduction of an uncontaminated airstream “curtain” between people was shown to reduce 

microbial contamination during surgical procedures 187, and could be applied to other contexts. 

An example of directed airflow around an infectious person is a ventilated headboard (such as 

that developed by NIOSH) that exhausts patient generated aerosols to reduce exposure to others 

nearby 188. Compared with a well-mixed space and the objective of cleaning the entire space, 

when room air is not well-mixed, provision of air cleaning and delivery close to the source can 

be more effective. This basic principle of air cleaning is well known and examples of the 

effectiveness of local air cleaning have been shown in recent studies 189,190. Although airflow and 

air cleaning measures can reduce close-interactive transfer when applied continuously, effective 

risk reduction strategies at this scale would benefit from addressing knowledge gaps about the 

distance and time required for source aerosols to dissipate to well-mixed levels within rooms.  

II. Room scale 

Exposure at room scale is important because of the potential for high concentrations of infectious 

aerosols, large numbers of exposed individuals, and prolonged exposure durations. 

Superspreading has been well-documented at this scale 25,153,191,192, and controls effective at this 

scale have the greatest potential to mitigate exposures and outbreaks at the community level 
28,29,174. Room scale airflow controls offer greater protection at longer versus shorter range, and 

could offer better protection against respirable aerosols (≤2.5–5 µm) that are more easily 

entrained in air flow than larger aerosols and sprays with greater deposition removal 140. Transfer 

can be mitigated by ventilation, filtration, GUV, and air distribution to maximize control 

effectiveness (Figure 2). These approaches aim to reduce direct airflow connections between 

occupants, reduce well-mixed aerosol concentrations, and increase pathogen inactivation rates. 

There remain important research gaps in demonstrating the efficacy of individual room scale 

engineering controls and their effectiveness to reduce risk in population-based studies. 

Environmental quality and engineering controls in buildings are often not reported or their 

effects are not assessed in investigations of infection transmission. For example, two, high-

profile population-based studies of SARS-CoV-2 transmission interventions in grad schools did 

not address the effects of controls like increased ventilation or air cleaner use because data on 

such controls was not collected 185,193, perhaps because there were no improvements in 

ventilation or infectious aerosol removal. There is a greater availability of evidence on controls 

that are commonly recorded such as distancing, masking, and symptom checks. 
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Figure 2. Scales of infectious aerosol transfer and control measures in buildings. Arrows depict 

airflow. Red dots depict infectious aerosols emitted from a single infectious person. These 

aerosols are likely to spread throughout spaces, beyond what is illustrated here, with relative 

exposures at different scales illustrated in Figure 1, however, control measures can reduce their 

transfer. Air flows in blue; GUV in light purple (although bluer in actuality when reflected off a 

surface). 

 

Ventilation 

In rooms that are well mixed, ventilation provides first order contaminant removal at the air 

exchange rate. Exposure reductions can be even higher with effective directional airflow 

patterns. Increased air exchange typically reduces exposure, unless a susceptible person is 

directly downwind of air flowing from the infectious source. Directional ventilation can reduce 

risk by controlling flows of potentially contaminated air 194. The importance of clean air supply 

for controlling infectious aerosols was described by both Nightingale and Billings in the 19th 

century 195,196, and by Wells in his foundational work in the mid-20th century 172. Evidence from 

observational, experimental, and modelling studies supports the relationship between ventilation, 

occupancy, exposure time, and airborne infection rate 171,173,174,197–203. Systematic reviews have 

concluded that indoor ventilation levels are an important factor in airborne infection control 
34,35,204. Without a more precise characterization of the effects of ventilation and other controls on 

infection risk, public health precaution supports an abundance of clean air delivery, which could 

potentially waste energy beyond what might be needed for infection control or other health 

benefits 30. A summary of how authoritative bodies have considered ventilation for infection 

control is included in Appendix 4.  

 

There have been numerous case reports of respiratory infection transmission events in poorly 

ventilated environments. A report of nine secondary SARS-CoV-2 infections from a single 

primary case in a restaurant with recirculating air-conditioning units and an estimated ventilation 

rate of 0.9 L/s/p suggested a ventilation rate requirement of 38.6 L/s/p to inhibit transmission 25. 

Extensive transmission in poorly ventilated indoor environments contrasts with comprehensive 

contact tracing efforts that have detected very few instances of transmission during outdoor 
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exposures where dilution ventilation is abundant, as detected by comprehensive contact tracing 

efforts 21,23,24,26,27,151,205–207. When ventilation systems are limited in their capacity to increase the 

supply of outdoor air, some have suggested vacating indoor environments periodically to allow 

for air clearance 208–210.  

 

Table 3 provides a summary of the main findings from a selection of epidemiologic studies that 

linked ventilation with respiratory infection risk. The studies included measured or estimated 

ventilation during exposure between primary and secondary cases, and calculated infection risk 

given an assessment of the total number of people exposed. Some were included in previous 

reviews 34,35. These studies consistently showed statistically significant increases in risk ranging 

from approximately 25–300% or more when comparing lower versus higher ventilation 

conditions. The generalizability of these existing studies is limited due to small sample sizes and 

designs that often fell short of achieving scrupulous exposure assessment and confirmed 

transmission under varying levels of well-characterized ventilation conditions. Human-challenge 

transmission studies in controlled environments with engineering interventions could provide 

stronger internal validity. External generalizability of such studies may be limited unless realistic 

exposure scenarios can be achieved. Human-challenge trials require substantial financial 

investment, careful design, execution, and attention to ethical concerns. A relatively large 

human-challenge influenza transmission trial failed to detect more than one transmission event, 

likely due to high ventilation rates in the quarantine facility in which it was conducted, and low 

infectious potential of the experimentally infected primary cases 211. Other designs that test lower 

ventilation levels and/or draw from symptomatic, naturally infected populations could improve 

on this approach. 

 

High ventilation rates of 6–12 air changes per hour (ACH) or more are often required in health 

care settings (Appendix 4) and can be achieved through natural and mechanical means 212. 

Depending on the anticipated occupant density, minimum outdoor air exchange may be <1 ACH. 

When using natural ventilation, WHO suggested an hourly average flow rate of 160 L/s/p in 

airborne precaution rooms and 80 L/s/p (equivalent to 12 ACH in a 4x2x3 m space) in other 

health care spaces 213. This is consistent with total clean air flow delivery of 160 L/s/p in aerosol 

precaution spaces recommended by WHO interim guidance on COVID-19 infection prevention 

in healthcare settings 214. Natural ventilation is capable of achieving abundant air exchange but 

can also be much lower and is highly variable, dependent on wind speed, direction, and 

temperature. Window opening and natural cross ventilation in Peruvian hospitals resulted in air 

exchange up to 17 ACH in a consulting room and 66 ACH in a waiting room 215. Cross 

ventilation in a UK hospital achieved 27 ACH and uniform aerosol concentration across an open 

plan ward, given strong wind outside 181. Natural ventilation can be influenced by the positioning 

of the room with respect to other building structures and thermal sources. Mechanically supplied 

ventilation can supplement low, natural, air flow delivery to assure an abundance of air exchange 

and mixing for infection control. Field studies of California schools found ventilation rates 

commonly below the ASHRAE standard of 7 L/s/p, suggesting the potential for widespread 

improvements in ventilation to meet standard rates 216,217.  

Filtration 

Filtration in recirculating HVAC units and in portable air cleaners removes respiratory aerosols, 

reducing exposure and infection risk 218,219. A 2020 ASHRAE position document states that filter 

efficiency of MERV 13 or better can effectively remove infectious aerosols 220. MERV 13 filters 
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are rated to capture at least half of 0.3–1 µm, 85% of 1–3 µm, and 90% of 3–10 µm particles. If 

most of the infectious pathogens are contained in super-micron particles, then MERV 11 filters 

could provide comparable filtration efficiency. Compared with MERV 13 filters, they are less 

costly and tend to have lower air flow resistance, enabling higher airflows (and more air 

cleaning) or lower energy demand 221. Filters with MERV ratings below 13 are not certified to 

capture submicron particles, but published filter performance evaluation indicates that MERV 8–

12 filters can capture submicron aerosols 221–223. Single pass filter efficiency typically increases 

with loading 224. Modeling studies of non-healthcare settings with various levels of assumed 

inhaled infectious aerosols have shown that air filtration in recirculating HVAC systems could 

decrease aerosol inhalation transmission 218,225. A study of aerosol removal by four portable 

HEPA cleaners with a total 1026 m3/h CADR (5.5 equivalent ACH) in an active classroom (128 

m3) with well-mixed air showed a 95% reduction in particles 0.01–10 µm after 37 minutes 226. 

Teachers and students indicated little disturbance by the noise of the air cleaners in the 

classroom, however, portable air cleaners can generate noticeable or uncomfortable noise levels 

in roughly the 50-60 dB range at maximum fan speed and ASHRAE has suggested selecting air 

cleaners based on reduced fan speed if noise is a concern 227. Do-it-yourself box fan cleaners 

with panel filters are generally noisier than commercial portable cleaners 228. It is clear that air 

filtration can reduce the indoor concentration of potentially infectious airborne particles when 

applied alone or in combination with other sources of contaminant removal via air exchange. 

Additional research could assess removal performance in a variety of real-world versus 

laboratory settings, effects on human health outcomes, and barriers to widespread use.  

Germicidal ultraviolet irradiation (GUV)  

Within-room infectious aerosol transfer can be controlled through the inactivation of pathogen 

infectivity using upper-room or far GUV. It is helpful to coordinate GUV use with airflow 

management to increase air movement to, and residence time in, zones of irradiance. GUV 

(sometimes abbreviated UVGI) has been used successfully for nearly a century to control 

airborne infections including E. coli, tuberculosis, measles, and influenza 175,229–235. Upper-room 

GUV uses high energy, short wavelength radiation, within the UVC band of 200-280 nm, to 

damage the genetic material in viruses, bacteria, mold, and other organisms, rendering them 

noninfectious. Common GUV sources are mercury vapor or amalgam lamps that primarily 

produce ~254 nm UVC, which is close to the peak wavelengths for microbial inactivation (260–

270 nm) with lower potential for skin or eye damage relative to longer wavelengths 236. More 

recently, LED lamps have been developed to produce similar wavelength with sufficient 

irradiance for disinfection 237. UVC is almost entirely absorbed in the outermost layer of the skin 

and is unlikely to pose cancer risk like longer wavelength UVA or UVB 238. A minor, yet painful 

irritation—erythema (skin) or photokeratitis (eye)—which normally resolves in 1–2 days, can 

occur from direct exposure prompting caution. The potential risk associated with eye exposure 

prompted the American Conference of Governmental Industrial Hygienists Committee on 

Physical Agents to assign a threshold limit value (TLV) of 6 mJ/ cm2 at 254 nm, however 

measured human exposures in a variety of healthcare and other workplace settings showed that 

exposure is generally far below the TLV, rarely reaching a third of the TLV at maximum 236. A 

trial of upper-room GUV (254 nm) at U.S. homeless shelters with thousands of staff and 

homeless participants found no difference in skin or eye symptoms between placebo and control 

periods 239. Exposure limits for a range of wavelengths provided by the International Commission 

on Non-Ionizing Radiation Protection (ICNIRP) reflects reduced penetration potential, and tests 

of 222 nm wavelength at a level seven times the ICNIRP resulted in no harmful effects in a 
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human skin model 240,241. Environmental conditions and contact networks can influence the 

effectiveness of GUV controls at the population scale. GUV may have the greatest effect when 

applied in crowded, high-risk spaces. Interruption of aerosol transmission has been estimated to 

contribute to meaningful community-level infection control at hubs of human network 

connection, including when the inhalation mode accounts for as few as 20% of infections 
199,200,242. Lab-based studies of pathogen inactivation that assign “Z” or “k” rate constant values to 

indicate susceptibility to GUV facilitate estimation of inactivation rates across levels of exposure 

to GUV irradiance and under scenarios of varying humidity, air flow, and temperature 230,233,243–

246. 

 

Upper-room GUV is typically installed on walls or ceilings to irradiate the upper zone of an 

indoor space. It has the advantage of rapidly treating large volumes of indoor air, making it 

highly efficient for infection control. Some studies have shown that, paired with a ceiling fan to 

increase air movement between the sanitization and breathing zones, upper-room GUV was 

capable of achieving an order of 10 or even 100 equivalent ACH 235,243,247,248. The addition of a 

ceiling fan to stimulate air movement up into zones of upper-room irradiation was estimated to 

increase GUV-generated air change per hour equivalents by a factor of 2 or more 186,249. Thermal 

plumes from occupants and objects in the room that are warmer than room air temperature 

(including e.g., any operating electronic equipment) create within room flow patterns of air 

moving into the sterilization zone in the upper part of the room then circulating back to the 

breathing zone along cold walls or cooler places without warm bodies. Wells and colleagues 

demonstrated that upper-room GUV substantially reduced transmission of measles, mumps, and 

chickenpox in suburban grade schools 234,250. Subsequent epidemiologic investigations in other 

schools showed no significant effect, likely due to increased sources of transmission outside of 

schools in more urban settings 127,231. Rates of infection in a Veterans Administration hospital 

deploying upper-room GUV during an influenza season were nearly 90% lower than those in 

nearby hospitals without GUV 251. With regards to safety, upper-room GUV can achieve 

effective air disinfection while keeping exposure to irradiance, including that from reflections off 

ceilings, below workplace exposure limits 236,252. Overall, the body of evidence supports upper-

room GUV as an efficient and highly effective control against infectious aerosol transmission. 

 

In-duct GUV can reduce within-room exposure during air recirculation to an extent similar to 

filtering recirculated air. A typical HVAC system in a non-healthcare application will supply 

approximately six ACH at most, and much less on average for a variable air volume system. 

Consequently, this is the maximum disinfected air delivery rate of such a system. On the other 

hand, upper-room systems can provide equivalent air changes much greater than six ACH. 

Nevertheless, both modeling and field measurements suggest that in-duct GUV can have cost-

effective, beneficial health effects. Simulation of an in-duct system in three climates found that 

room air concentrations of pathogens were reduced by approximately 50-70%, with a median 

reduction of approximately 65% 253. A double-blind evaluation of GUV installed in office air 

handling units reported reduced levels of microbial contamination on air-handling unit surfaces 

and in the air, and lower levels of respiratory and other symptoms during GUV operation among 

771 participating workers 254. An additional benefit of in-duct GUV, when done in an air-

handling unit, is control of microbial growth on cooling coils and in condensate pans 255. 

Biofouling on cooling coils reduces air-side heat transfer coefficient and can reduce air flow or 

increase fan energy use. Recent field investigations report net energy use benefits of coil 
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irradiation as well as reductions in maintenance cost relative to mechanical and chemical 

cleaning 256–259. 

 

Whole-room GUV floods the occupancy zone and can be useful for surface decontamination 260; 

however, dust and crevices can provide shielding, thus reducing effectiveness. Thorough surface 

cleaning to access small crevices and remove particles may be warranted; and if an effective 

cleaning solution is used for that purpose, then additional disinfection may not be necessary. 

Depending on the wavelength used, it may be necessary to avoid exposure of skin and eyes to the 

whole-room GUV. Far GUV (UVC 200–230 nm) is designed to bathe occupied spaces with 

irradiance, leading to direct inactivation of infectious pathogens in the air or on surfaces within 

the occupied zone. Far GUV may have a similar capacity to inactivate microorganisms as the 

well-characterized higher UVC wavelengths (250–270nm), while reducing safety concerns with 

human exposure 241,261. Available studies using mammalian cell culture, animals, and humans 

have shown that 222nm far UVC can inactivate respiratory pathogens does not cause skin 

irritation associated with exposure to the 254nm wavelength 241,261,262 GUV “barriers,” or beams 

of germicidal light to sterilize air between office workers, have been used in the past with 254 

nm sources, but safety concerns and declining TB rates in the US led to their disuse 127. Should 

further safety and efficacy evaluation of far GUV yield favorable results, far GUV could provide 

an update to GUV barriers of the past and contribute to infection control at room scale, and 

between infectious and susceptible individuals in close-interaction. Far GUV lamps can generate 

low levels of ozone, however, filtered lamps and lower power modes can ensure generation well 

below limits to protect health 241,263,264. Upper-room GUV applications that deploy wavelengths 

above 240 nm and block wavelengths below that do not produce ozone. Overall, with some care 

toward proper deployment to ensure effective and safe application, GUV can offer a helpful 

layer of airborne infection control, and perhaps a critical one in settings where other controls are 

not readily available.    

 

Airflow management 

Given that infectious respiratory aerosols are transported by air currents, air flow dynamics 

strongly influence transfer and intervention efficacy. Highly controlled laminar and 

unidirectional air flows can be used to reduce patient exposure to contaminants in operating 

theatres, and could be selectively adapted to high-risk, non-healthcare settings 265. Experiments 

have been done to characterize air flow dynamics related to a variety of ventilation systems 204. 

Although downward ventilation, displacement ventilation, mixing ventilation, and personalized 

ventilation influenced air flow in a room with a single patient, the investigators found that 

regardless of the type of ventilation, exhausting air at the top of the room represented a relatively 

effective means of removing aerosols, attributed to upward flow. Inlets positioned in the lower 

portion of the room to generate displacement ventilation can increase delivery of HVAC supply 

air to the breathing zone, although repositioning existing inlets may not be easy. A tracer gas 

study of aerosol exposure between stationary manikins ≤1.5 m apart showed that displacement 

ventilation was associated with lower time-averaged exposure compared with mixing or stratum 

air distribution 266, consistent with what has been observed in previous modelling studies with 

intake fractions several orders of magnitude higher for ≤5 µm particles 110. The effectiveness of 

displacement ventilation for removing exhaled breath aerosols can be diminished with increasing 

temperature gradients between the breathing zone and the upper zones of the room. Thermal 

stratification where air is warmer in the upper portion of the room compared with the air meant 
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to rise from the breathing zone can promote a locking effect of air within horizontal layers, thus 

reducing the rate of dilution 267–269. The addition of human movement throughout an indoor space 

promotes well-mixed conditions and, while helping to distribute infectious aerosol and reduce 

intense concentrations around a source, can also attenuate the speed of upward aerosol removal 

by a displacement ventilation scheme 268,270. Thermal stratification can also reduce effectiveness 

of systems intended to supply mixing ventilation, and is particularly problematic when the 

supply air is heated and provided at or along the ceiling 271,272. These potential problems with 

achieving maximum dilution ventilation spur future research directions. The addition of air 

currents and dispersion from human movement, portable air cleaners, and ceiling fans offer 

approaches to reduce thermal locking and increase mixing. This can help to deliver contaminated 

air more readily toward exhaust or GUV zones, and to deliver more clean air to breathing zones. 

Deposition and control against resuspension  

For respirable aerosols, deposition onto surfaces reduces airborne particle concentrations to a 

lesser extent than other mechanisms, and the extent to which deposition can be manipulated as an 

aerosol transfer control mechanism is limited. For aerosols larger than respirable size (>5 µm) 

deposition is a major, if not dominant, source of removal. Deposition loss-rate coefficients in the 

range of approximately 0.1–7 h-1 for particle sizes 0.55–8.66 µm have been reported for a bare 

space with neither furnishings, occupants, nor mechanical air mixing 273,274. Surface deposition 

was shown to be increased by a factor of 1.3–2.4 by increasing airspeed from <5 to 19 cm/s with 

fans, with a stronger effect on smaller particles 274. However, compared with still air, some air 

movement from open windows or doors to the outside, mechanical systems, and occupants 

moving around can lengthen the airborne residence time. By adding 12 m2 surface area via 

furnishings to a room with total volume 14.2 m3, deposition increased by a factor of up to 2.6 

with a stronger effect on larger particles (ibid). Studies of aerosols 1 to >10 µm introduced to 

HVAC ducts with typical velocities (~2–9 m/s) showed in-duct deposition increasing with 

aerosol size and velocity 275,276. Tests of aerosols 1–10 µm in an HVAC coil apparatus showed up 

to 30% deposition, with increased deposition with aerosol size, and very mild increases in 

deposition with air speed change from 1-5 m/s 277. The extent to which strategies to promote 

deposition can reduce infectious aerosol transfer in practice has not been extensively studied. 

 

Once deposited on surfaces, potentially infectious material can be resuspended through 

disturbances, posing a potential source of transmission 278–285. Eight-hour room exposures to 

aerosols <1 to >10 µm were shown to increase by up to three orders of magnitude as a result of 

resuspended particles in an experimental HVAC duct 286. Running HVAC systems for a 

“washout” period before occupancy can reduce exposure to particles that are re-aerosolized 

within supply ducts, and surface cleaning offers to reduce other sources of re-aerosolization. The 

infectivity of pathogenic aerosols that have settled and reaerosolized over various scales of 

residence time outside of hosts is not well characterized. 

III. Building scale 

Although building scale transfer is typically low, due to concentration dilution with distance 

from the source – including dilution within HVAC systems – (Figure 1), there exist scenarios 

where it could present non-negligible risk, with implications for populations larger than those at 

room scale. Air can be transferred between rooms by forced air HVAC, exhaust or pressure-
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driven internal flows; vertically driven by stack effects and solar load; and horizontally driven by 

wind and temperature gradients. Beginning 20 years ago in response to the threat of weaponized 

anthrax, several modeling studies have presented strong evidence for building scale pathogenic 

aerosol transfer. A SARS superspreading event within a hospital ward was consistent with CFD 

showing the dispersion of airflow and aerosol viral concentrations from an infected person’s 

cubical throughout an open ward 287,288. Similarly, a large MERS outbreak in a hospital was 

linked with airflow between patient rooms 289. Detection of infectious MERS in the air outside of 

a makeshift MERS isolation unit suggested a failure of interzonal airflow control 290. Beyond the 

healthcare setting, air flow patterns – constructed from tracer gas experiments, CFD, and 

statistical models – predicted the spatiotemporal distribution of SARS cases in a high-rise 

apartment complex, from a plausible source of viral aerosol from a plumbing vent, rising 

throughout buildings, and spreading across a courtyard to other buildings 93,94,291. Viral 

aerosolization from wastewater vents or natural ventilation air ducts has also been implicated in 

the vertical spread of SARS-CoV-2 in high-rise apartment buildings 95,292,293. In a university 

dormitory wing, multi-zone airflow modelling showed that the room of a resident with acute 

respiratory infection in the wing had an airflow connection with the only secondary case in the 

wing, suggesting a plausible aerosol transmission mode  203. Although between-room 

connections within a house are generally different than between-room connections in a 

commercial or multi-unit building, available studies suggest that there could be more building 

scale transfer of submicron-sized aerosols within-unit than may be reported, missed by lack of 

investigation of between-zone connections.   

 

Forced air thermal conditioning (HVAC) systems in commercial buildings typically mix air that 

is returned from the occupied zone with outdoor ventilation air. A common risk reduction 

recommendation early in the COVID-19 pandemic was to increase the amount of outdoor air and 

minimize recirculation 220. ASHRAE Core Recommendations from several months later suggest 

that outdoor air supply meet code and the adoption of an effective clean air delivery approach 294, 

consistent with parallel goals of energy savings and appropriate thermal conditioning. Filtration 

and inactivation by GUV within the HVAC system (along with deposition in the duct) can 

reduce infectious aerosol concentrations within and between rooms at much lower energy cost 

than outdoor air ventilation, which often requires thermal conditioning. An exception to this is 

the use of economizers, which, when outdoor conditions are suitable, increase the outdoor air 

fraction to achieve “free” cooling. Demand-controlled ventilation, on the other hand, reduces 

outdoor airflow in proportion to occupancy in order to save energy during periods when 

economizer operation is not possible, potentially increasing aerosol transfer. The risk associated 

with between-room transfer, although largely uncharacterized, would be greatly mitigated by the 

dilution that necessarily happens when air is mixed in an HVAC system serving a larger area 

(Figure 1). Nonetheless, air cleaning in-duct presents an opportunity for efficient pathogen 

mitigation contributing non-infectious air supply equal to the HVAC recirculation rates, which 

can often be as high as 4–6 ACH. 

 

Building scale airflow interventions aim to reduce the magnitude of aerosol transfer from spaces 

with higher probabilities of infected people to spaces with susceptibles. Beyond healthcare 

settings, airflow management is especially relevant in residential environments where people 

spend extended periods of time and infected individuals are less likely to practice controls related 

to activities or masking. Yet knowledge on the efficacy of building-scale airflow interventions is 
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limited. A tracer gas study showing 2–35% transfer between-units in multiunit residential 

buildings showed sealing interventions resulted in a slight increase in median between-unit 

airflow 295. Negative pressure, as deployed in hospital isolation areas, residential care, or 

household settings, can effectively move contaminated room air through an exhaust and reduce 

or eliminate exposure to individuals in the adjacent rooms or corridors 194,296–298. Yet such design 

strategies remain to be thoroughly explored for feasible translation, related to market and 

technician acceptance, in occupational, school, multiunit residential, and other settings. 

Other benefits from infectious aerosol controls 

Infection control has secondary health benefits beyond reducing acute disease. COVID-19 has 

resulted in numerous adverse sequelae including cardiovascular, brain, and long-term effects 

(“long COVID”) 299. Reducing inhalation exposure to rhinovirus can lower the prevalence of 

severe asthma in children 300. Elevated ventilation and filtration can lower exposure to dampness 

(related to climate), mold, and other indoor air contaminants of concern 55,56,301,302. Several studies 

reiterate the efficacy of filtration-based portable air cleaners for removing particulate matter as 

small as ultrafine (≤0.1 µm), associated with respiratory and cardiovascular disease 303–307. 

Cognitive function scores, work productivity, and performance on attention, speed, accuracy, and 

decision-making tests could also be improved with increases in ventilation 52,54,308,309. Several 

studies have documented reduced absenteeism in schools and workplaces with increased 

ventilation, related to reduced prevalence of respiratory illness 54,217,310,311. The costs of increasing 

ventilation are small compared with the health and wellness benefits in schools and workplaces 
31,312, including in tropical climates where dehumidification costs are much greater 313. A 2002 

multidisciplinary review estimated billions of dollars in economic savings in the US associated 

with health benefits from ventilation 314, an underestimate in today’s population and economic 

terms.  

Research priorities 

Knowledge gaps 

Based on the reviewed literature, several key knowledge gaps have emerged that impede efforts 

to implement engineering controls for infection control, other health benefits. These gaps, posed 

below as questions, can be addressed through proposed research priorities in controlled and well-

characterized environments, in real-world, practice-based settings, and through methodological 

advancements. A condensed version of knowledge gaps and research priorities is given by Figure 

3. 

1. For SARS-CoV-2, influenza viruses, and other respiratory pathogens, how much 

infectious virus is released through exhaled breath in aerosols of various sizes and what 

are the immunological, physiological, and activity-related predictors of infectious aerosol 

shedding? How many infectious virions are contained in individual aerosol droplets of 

different sizes, where are the most immunologically susceptible sites and population 

subgroups, and how do these factors influence infectious dose?  
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2. Given common configurations of airflow and patterns of human activity, how 

quantitatively heterogeneous is room scale aerosol concentration? How can controls 

reduce the distance between intense, close-interactive exposure, thus shifting exposure to 

the room scale that can be much more effectively controlled?  

3. Which settings across societies represent the highest risk for aerosol inhalation 

transmission? To what extent do cumulative exposures, including environmental 

pollutants and psychosocial stress that are often unequally distributed across 

sociodemographic groups, mediate infection risk? 

4. What advancements in modelling are needed to account for cumulative exposure to a 

range of relevant infectious aerosol sizes to provide substantially more specific estimates 

of infection risk? Which models can provide accurate estimation of engineering control 

effectiveness in a variety of real-world settings? 

5. How can engineering controls be deployed in real-world environments (e.g., best 

configurations and combinations) to confer the greatest levels of protection? How can 

airflow management reduce close-interactive exposure and improve the effectiveness of 

ventilation, filtration, and GUV strategies? Which strategies can provide efficient 

evaluation and validation of emerging control technologies? 

6. What arrangement of engineering controls can provide the greatest cumulative health 

benefits for the amount of energy required? 

7. What strategies are most effective in facilitating implementation of engineering controls 

at scale given investment, operational, behavior change, and energy challenges related to 

adoption?  

Research in controlled and well-characterized environments 

Controlled experiments in well-characterized environments enable quantitative evaluation of 

intervention effectiveness in specific settings. Key elements include occupant positioning, 

spacing, movement, and interaction; airflows induced by human movement, natural or direct 

outdoor air mechanical ventilation, and forced air thermal conditioning systems; and common 

layouts, including open versus enclosed offices, large superstores versus smaller markets, 

configurations for congregant care facilities, table and seating arrangements in restaurants, etc. 

Better characterization of the physical properties and removal mechanisms of aerosols that carry 

infectious material would support the targeting of controls to specific pathogens, heterogeneous 

host populations, and the various indoor settings. The following activities would be particularly 

valuable. 

1. Measure size-resolved infectious aerosol transfer (including respirable, thoracic, and 

larger aerosols) from human or simulated sources in relevant settings where masks cannot 

be worn (e.g., dining halls, restaurants) or where masks may not work effectively owing 

to activity or improper fit. Quantify the benefits of administrative and engineering 

controls in these settings. 

2. Characterize the aerosol exposure dynamics differentiating close-interactive and room 

scale transfers, especially in environments that are not well-mixed and where connections 

between occupants vary widely with positioning, human movement, and use of barriers, 

intentional stratification, and other airflow management strategies. Identify effective 

controls for common configurations.  
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3. Conduct experimental studies to validate CFD modelling with the goal of supporting the 

development of simple, computationally tractable engineering models that can 

characterize within-room spatiotemporal evolution of infectious aerosol concentration. 

Identify modelling techniques that provide robust and practically informative results with 

acceptable computational burdens. 

4. Quantify the effectiveness of controls such as portable filters and GUV (upper-room and 

far GUV) on aerosol and infectious agent surrogates in actual or simulated occupied 

buildings through controlled experiments, with particular focus on environments in which 

masks have limited applicability, people move around, or strict density limits have high 

costs (e.g., school hallways, grocery and retail, public transit, institutional dining, etc.). 

Studies are needed to characterize the performance of controls in generalizable ways 

(e.g., single pass efficiency of a filter) and then to quantify how the application of control 

measures under different conditions modulates performance (e.g., CADR in practice 

compared with nominal rating by AHAM test procedure).  

5. Lower priority: Quantify potential transfers of infectious aerosols via resuspension from 

filters, floors, and other surfaces in rooms, and aerosol transfers between rooms, to 

address concerns that they could present significant risks under some circumstances.  

Practice-based research 

Practice-based research includes field studies and other investigations that support 

implementation of infection control measures targeted to specific settings.  

1. Conduct retrospective, infectious disease outbreak investigations at sites where 

transmissions are suspected or confirmed to determine the transfer mechanisms (i.e., 

aerosols, direct transfer via drops, fomites), and build a knowledge base of the 

relationships between infection risk, exposure, and existing controls. Documentation of 

ventilation system configuration and operation and any extant filtration should be a 

standard part of outbreak investigations that cannot be entirely attributable to close 

contacts.  

2. Invest in resource-intensive, population-based epidemiologic studies to improve 

understanding of the effectiveness of engineering and administrative controls to reduce 

exposure and transmission in specific settings. Study designs valuable to substantially 

advancing public health infection control include prospective infection monitoring with 

a) large populations (hundreds to thousands of participants) and crude evaluation of 

indoor environmental conditions including ventilation, filtration, or other features related 

to infectious aerosol transfer, and b) smaller populations and comprehensive 

characterization of indoor environmental quality and controls related to infectious aerosol 

transfer. The latter includes blinded interventions and sampling for infectious aerosols 

from environmental air and the exhaled breath of naturally infected occupants.  

3. As is done for chemical hazards, conduct infectious aerosol transmission risk assessment 

using modelling that accounts for uncertainties in control effectiveness and variability in 

infectious dose generation rates associated with aerosol shedding, pathogen infectivity, 

and immunologically vulnerable exposed groups. To support risk assessment related to 

controls, develop algorithms to estimate the adequacy of outdoor and filtered air delivery 

when employing economizers, demand-controlled ventilation, or other dynamic systems, 

and evaluate associated energy savings.  
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4. Identify high priority settings for controls, including evaluation of exposure based on 

building features, use activities, socioeconomic features of building occupants and their 

cumulative exposures. Attention should be directed toward reducing exposures for 

socioeconomically disadvantaged communities and settings where building infrastructure 

facilitates elevated risk of transmission. Investigate the effects of winter minimum 

relative humidity—especially in cold climates—on health and vulnerability to respiratory 

infection.  

5. Use research methods from social science and industrial engineering to systematically 

study the common challenges and barriers faced by building owners and operators who 

aim to implement  recommended infection control guidance from ASHRAE, AIVC, 

CDC, WHO, etc. Challenges, listed below, may limit implementation or reduce control 

effectiveness.  

a. Operational and energy-related challenges. Indoor air quality for thermal comfort 

and health and energy use are coupled; and increasing ventilation can increase 

energy use including peak demand. Achieving improved indoor air quality within 

the context of decarbonizing the built environment is an important need. 

Alternatives to ventilation or more effective ventilation are needed. The opening 

of windows to improve ventilation may complicate efforts to manage thermal 

comfort. There also exist challenges with achieving effective and reliable design 

and deployment of GUV given irradiance strength, room volume, and air flows.  

b. Behavioral challenges. For example, controls that rely on human behavior, such 

as opening windows or manually-controlled mechanical ventilation or filtration 

systems, may not be implemented reliably or as intended. In some settings, open 

windows could increase exposure to ambient noise and air pollution, and could 

raise security concerns.   

c. Institutional and financial challenges. Retrofits to upgrade HVAC equipment to 

improve ventilation or filtration may take years to implement. Those tasked with 

purchasing air cleaners may be influenced by sales pitches to buy higher cost 

units with unhelpful features and as a result not provide adequate coverage with 

conventional options. An example is high-priced portable air cleaners that utilize 

ionization but provide lower clean air delivery rates where devices with media 

filters could provide much more delivered clean air at lower cost.  

Methods 

The development and assessment of methods and metrics, listed here, supports priority studies in 

controlled and applied settings, including large-scale, prospective, transmission monitoring in 

buildings and control measure evaluation.  

1. Develop metrics and supporting test methods for infectious aerosol inactivation. Methods 

should include surrogate viruses or organisms reflecting a range of pathogen 

susceptibility. The predicted effectiveness of exposure mitigation via GUV within a room 

currently requires complex modelling given knowledge of pathogen susceptibility. 

Metrics that enable estimation of the airborne infection control potential of GUV in 

combination with other controls would be particularly useful, including a CADR-like 

measure for infectious particle inactivation at different sizes. Metrics and methods (e.g., a 

chamber test procedure) can be used to evaluate efficacy of developing technologies 
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including those that release disinfectants into the air (e.g., ionization, hydrogen peroxide 

vapor, triethylene glycol) along with safety tests related to potential byproduct formation 

and health effects. 

2. Develop methods to improve the sensitivity of infectious aerosol detection and 

quantification from exhaled breath and ambient air sampling. Improvements could be 

targeted for a) increased resolution of size-resolved aerosol collection, b) increased 

usability and accessibility of samplers to enable widespread use in research contexts and 

potentially also operationally in sensitive buildings, and c) recommended strategies to 

quantify aerosol pathogen loads in occupied buildings, considering sampling location, 

duration, and frequency.  

3. Prepare computational models for use by building operators to estimate infectious aerosol 

inhalation exposure (e.g., via CONTAM) and energy demand (e.g., via EnergyPlus) as a 

result of individual or combined controls that consider the empirical assessment of a) 

expected transfer of aerosols of different sizes following release, and b) the in-situ 

effectiveness of control measures. The goal is to reduce the difficulty of working with 

multiple modeling tools and of generating appropriate validation data (e.g., well-mixed 

conditions to match CONTAM).  

 

 
Figure 3. Knowledge gaps and research priorities to support implementation of indoor control 

measures against airborne infection. 

 

Conclusions 

Emerging variants of SARS-CoV-2 with increased transmissibility underscore the importance of 

controls for aerosol inhalation transmission. Ventilation, filtration, GUV, and airflow 

management can effectively reduce exposure to pathogenic aerosols in buildings, with 
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substantial public health benefit; but real-world demonstration and evaluation is needed to 

advance systematic and widespread implementation. Quantitation of viral shedding from study 

populations into saliva or upper respiratory mucosa have reported lognormal distributions 48,315, 

and few individuals shedding the most virus have been implicated in driving population 

transmission 28,29. If SARS-CoV-2 aerosol shedding across the population follows a lognormal 

distribution, as has been considered elsewhere 316, then controls that lower total viral aerosol 

exposure by a factor of 10 can approach a meaningful reduction in infectivity of the highest 

shedders by an order of magnitude, thus reducing the impact of supershedders and the chances of 

encountering someone shedding enough to pose transmission risk. Building-level, engineering 

controls provide opportunities to reduce reliance on the challenging physical distancing measures 

experienced during COVID-19 and other plagues. Engineering controls can add to risk reduction 

achieved by administrative approaches and thus support in-person gatherings that provide for 

social wellness, learning, and commerce. They also present an important opportunity to advance 

social justice in the wake of a pandemic with highly inequitable health and economic burdens.  

 

This review identified gaps in existing knowledge that point to the need for studies and methods 

to measure, quantify, and model the relationships between control-mediated aerosol transfer and 

actual infection risk. We have built on previous reviews of engineering control effectiveness 
3,5,175,204 and contextualized priority research directions for evaluating controls at specific scales 

and settings. The goal is to support efforts to tailor and modify control measures akin to 

personalized medicine, based on the infectiousness of various pathogens of concern and based on 

the exposures hosted by the setting. Evaluation of implemented control measures must consider 

aerosol transfer mechanisms specific to the close-interactive, room, and building scales. The 

overarching research goal spurred by the COVID-19 pandemic is to inform infection controls 

that reduce risk to acceptably small levels, thus minimizing disruption of indoor activities, while 

also minimizing energy and economic impacts. We provide a framework for considering the 

physical processes governing pathogenic aerosol transfer, independent of pathogen infectivity 

and host susceptibility, which may be highly variable. This supports efforts to select setting-

specific control strategies with well-predicted effects on aerosol transfer and energy 

requirements.  
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Tables 

Table 1. Scales of infectious aerosol transfer in buildings and associated engineering 

controls 

 Close-interactive scale Room scale Building scale  

Scale 

description 

Interactions within 1-2 m, occurring for 

at least 15 min per 24 h. Interactions 

include conversing, eating, laughing, 

working, and other. Risk increases with 

source emission and susceptible person 

inhalation rate, both related to activity. 

Risk increases with duration.  

Exposure within-room, between 

individuals not having close-interactive 

transfer. Poses the greatest risk for 

superspreading given potential large 

numbers of exposed and high 

concentrations of infectious aerosol 

when uncontrolled.  

Exposure between rooms or floors in a 

building with air transfer occurring 

through forced air heating, ventilating, 

and air conditioning (HVAC) systems or 

through pressure-induced airflow via 

connections including internal doorways 

and halls, plumbing, or common exhaust 

fan inlets.  

Ventilation 

and airflow 

management 

● Workstation airflow management. 

● Room-scale directional airflow. 

● Increase clean air delivery. 

● Directional airflow and clean air 

supply to the breathing zone. 

● Multi-zone HVAC systems (increase 

mixing volume and decrease high 

concentration transfer when an 

infected person is in the room). 

● Increase clean air delivery. 

● Directional airflow, e.g., exhausting 

from rooms expected to have greater 

presence of infectious aerosol. 

Filtration by 

HVAC 

system 

● Increase clean air delivery via in-duct 

filtration. Must mix with breathing 

zone air.  

● Increase in-room clean air delivery 

via in-duct filtration.  

● Increase clean air delivery with 

multi-zone sources via in-duct 

filtration. 

Filtration by 

portable air 

cleaner 

● Applied near the breathing zone 

(could be part of workstation airflow 

management). 

● Personal air cleaning devices. 

● Applied near the breathing zone 

and/or throughout the space.  

● Approaches from other scales. 

Infectious 

aerosol 

inactivation 

by GUV 

● Far GUV (222nm wavelength) in the 

breathing zone. 

● Far GUV in the breathing zone 

and/or throughout room space. 

● Upper-room GUV (best with induced 

mixing of air to upper-room).  

● GUV in recirculating HVAC ducts. 

● Approaches from other scales. 

Other 

strategies 

● Physical barriers (more helpful for 

drop sprays and larger aerosols 

compared with smaller aerosols). 

● Flushing between occupant cohorts 

 

● Sealing openings between spaces 
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Table 2. Settings with elevated risk factors for infectious aerosol transmission  

Priority settings (examples) Potential risk factors related to activities done in the setting leading to exposure at room scale and sometimes close-

interactive and/or building scale 

Dining (school cafeteria, restaurant, 

institutional residential, event) 

Impractical to wear masks; close-interactive; conversation, laughter; moderate duration (0.5–1 h) per encounter and 

possibly multiple encounters during infectious period; people moving makes directional airflow control challenging; many 

restaurants intended for high density occupancy; break rooms and dining areas may not be easily separable from mixing 

with other occupied areas, e.g., in schools, offices, and institutional residential buildings.  

Risky occupational settings 

(slaughterhouse, meat packing, 

factory, call center, agricultural 

worker housing)  

Long duration of co-occupancy over multiple days; conversation and loud speech may be required; PPE may not be 

available, may be uncomfortable to use, or poorly fitted; masking adherence may be problematic, especially in warm 

environments; special risks associated with some settings (e.g., talking at call centers, workstations that cannot be easily 

distanced, low temperature and relative humidity in meat processing plants); low ventilation; workers often limited to raise 

concerns; co-workers with elevated risk from living in high density homes with others also working in high risk 

occupational settings; limited/no paid leave discourages self-isolation/quarantine. 

Schools, meetings  

(preschool, K-12, university, 

conference, classroom, dining hall, 

gym, auditorium)  

Classrooms commonly have high occupant density, long periods of co-occupancy over consecutive days; loud speech often 

required for communication; conversations and small group interactions between classes and in halls are common; many 

facilities are older, with low ventilation or filtration in HVAC systems; students may have higher-risk living situations, 

e.g., sharing high-density housing with parents who work in high risk jobs; limited adherence to distancing and masking; 

limited or no access to respirators.  

Local & regional public transit (train, 

bus, car sharing) 

Economic viability of local and regional transit often depends on high rider densities during peak commutes; difficult to 

enforce mask rules and masks may not be correctly fitted or worn; screening is infeasible; co-occupancy with potentially 

large groups of strangers with unknown exposure for 0.5–1 h or more; limited or no access to respirators.  

Institutional residential (dormitory, 

nursing home, long-term care, prison, 

shelter, military barrack) 

Constant occupancy or for many hours per day; masking of residents is often infeasible; frequency and volume of 

conversation often cannot be controlled; close interactions between staff and residents needing care; many older facilities 

with inadequate ventilation and filtration; shared bedrooms; airflow connections between bedrooms and between dining 

areas and other common areas; natural ventilation often not practical; staff may work at multiple institutions and introduce 

infection between settings; residents may have comorbidities; worse conditions for underserved communities; limited or no 

access to respirators.  

Grocery, retail Employees exposed to large population (potentially infectious), close-interactive (e.g., cashier), long duration of workday 

exposure; infeasible to screen customers; some stores have small volume, narrow aisles, low ventilation; employees may 

not have paid sick leave; small businesses may not have enough staff to encourage staying home for infection control; 

limited or no access to respirators. 

Oratory, singing, wind instrument, 

performance (rehearsal room, 

performance hall, religious gathering) 

Many people present (potential for superspreading) and often high density; close-interactive; performers may be less likely 

to wear masks (e.g., film production), and are likely to use loud speech, shouting, or singing. 

Offices Conference rooms or similar space could host room-scale exposure for many people over a prolonged period of time (hours 

per day, over months); close interactions; limited or no access to respirators. 

Athletics performance (fitness 

facility, playing field/court, spectator 

area) 

Many people present; typically without face masks; close-interactive (among players, among spectators), loud speech, 

shouting, increased heavy breathing; building scale transfer from strong source generation. 

Private residential (single- or multi-

unit housing) 

Constant occupancy or exposure for many hours each day; close-interactive; masks typically not worn; inadequate 

ventilation in many homes, especially when hot or cold outside; often higher density in underserved communities; toilet-

generated aerosols; potential airflow connections between apartments, spanning multiple floors (e.g., shared HVAC, stack-

driven flows in converted single-family residence, exhaust ventilation in multi-story building). 

There are variations possible in each setting, and risk of transmission is related to multiple elements, including: 

1. Number of potentially infectious people present 

2. Number of people present with elevated immune susceptibility and risk of severe illness 

3. Distancing and density of people in the indoor space 

4. Use of face mask for emissions control 

5. Use of PPE (including face masks, but especially N95 or equivalent filtering facepiece respirators) 

6. Duration of exposure 

7. Magnitude of respiration (speaking, speaking loudly or shouting, singing, breathing fast and/or heavy) 

8. Presence of mechanical ventilation 

9. Presence of filtration or GUV in forced air HVAC system 

10. Differential burdens of exposures that increase risk for underserved socioeconomic and demographic groups 
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Table 3. Epidemiologic studies that evaluate the effect of ventilation on infection risk  

Study Exposure scenario Infection 

assessment 

Ventilation 

assessment 

Ventilation 

comparison 

Risk of infectiona  

317 

(Brundage et al., 

1988) 

Army trainees living 

in close quarters in 

barracks over 47 

months. 

Retrospective 

records 

assessment for 

febrile (≥38oC) 

respiratory illness. 

Estimated based on 

barrack design and 

occupancy 56. 

0.9 vs 6.8 L/s/p; 

‘Modern’, tighter 

sealed versus older, 

‘leaky’ barracks.  

Adjusted risk ratio 

1.51 (95% CI 1.46-

1.56). 

318  

(Hoge et al., 

1994) 

  

Inmates living in 

different areas of a jail 

over 4 weeks during 

an S. pneumoniae 

outbreak. 

Prospective 

culture of 

respiratory swabs 

& serology for S. 

pneumoniae. 

Cross-sectional 

measurement of CO2 

and evaluation of air 

flow from the 

ventilation system. 

>3.4 vs 2.0 L/s/p; Cell 

block style with more 

vs less outside air. 

Adjusted odds ratio 

2.02 (95% CI 1.07-

3.82). 

202(p200)  

(Menzies et al., 

2000) 

Health care workers 

exposed to TB cases 

over 3 years. 

Cross-sectional 

analysis of 

tuberculin skin 

test (TST) 

conversion. 

Cross-sectional CO2 

decay and smoke 

release experiments. 

<2 vs ≥2 ACH; 

workers in lower 

versus higher 

ventilated spaces. 

Adjusted hazard ratio 

3.4 (95% CI 2.1-5.8) 

for TST conversion 

negative to positive. 

319  

(Menzies, et al., 

2003) 

Laboratorians working 

in hospitals with TB 

cases over 3 years. 

Cross-sectional 

analysis of 

tuberculin skin 

test conversion. 

Cross-sectional CO2 

decay and smoke 

release experiments. 

16.7 vs 32.5 ACH 

(averages); lower 

versus higher 

ventilated spaces. 

Unadjusted infection 

risk greater (p<0.001; 

unpaired t test). 

320 

(Sun et al., 2011) 

University dormitory 

population in 17 

buildings. 

Questionnaire of 

common cold 

incidence over the 

previous year. 

Cross-sectional 

measurement of CO2 

decay experiments 

(peak vs outdoor). 

5 vs 1 L/s/p; Average 

dorm room ventilation 

rate of (CO2 decay 

calculation). 

Incident risk ratio 7 

(35% versus 5% 

study population) for 

≥6 common colds. 

197  

(Du et al., 2020) 

Retrospective cohort 

of household and 

university campus 

contacts (at least 30 

hours of shared air) of 

infectious TB cases 

from an outbreak. 

Ventilation 

interventions applied. 

Sputum tests and 

chest x-ray to 

detect active TB 

cases, with 

sequencing to 

confirm probable 

transmission 

clusters. 

Measured CO2 

concentrations before 

and after 

intervention. 

>1,000 vs <1,000 ppm 

CO2 (pre- vs post-

intervention 

classroom) with 

exposure to cases; CO2 

ppm (estimated clean 

air flow L/s/p) were 

3,200 (1.7) & 600 

(23.6-25.1). 

Adjusted hazard ratio 

32.8 (95% CI 2.0-

540.3) for acquiring 

active TB infection. 

203  

(Zhu et al., 2020) 

  

University dormitory 

population in ‘low’ 

(LVB) and ‘high 

ventilated (HVB) 

dormitory buildings. 

Prospective 

symptom 

monitoring with 

qRT-PCR for 

acute respiratory 

infections. 

Continuous 

measurement of CO2 

>5 mo. Measurement 

of building envelope 

pressure and local 

weather data. 

2.0 vs 5.9L/s/p; LVB 

vs HVB participant 

room means.  

1.9 vs 2.1L/s/p; 

leeward vs windward 

room means in LVB. 

Unadjusted incident 

rate ratio 4.04 (95% 

CI 0.69-163.02) LVB 

vs HVB; 1.3 (0.7-

2.61) leeward vs 

windward. 

321 (proof-of-

concept [POC], 

Killingley et al., 

2012); 
211 (main study, 

Nguyen-Van-

Tam et al., 2020) 

Compared infection 

rate between 2 human 

challenge trials with 

different ventilation 

levels. 

Daily, upper 

respiratory swab 

sample following 

inoculation, and 

pre- vs post-

infection serology. 

POC estimated given 

sealed suite with 

bathroom exhaust 174. 

Main estimated by 

CO2 decay & tracer 

gas experiments. 

0.8 L/s/p vs 4 L/s/p; 

POC vs main study. 

  

Unadjusted risk ratio 

of transmission 6.4 

(8.3 vs 1.3%). 

aExposure is compared at lower vs higher ventilation level.  
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Appendices 

Appendix 1 

Table A1. Tools for estimating exposure or risk for SARS-CoV-2 in indoor environments 

Tool/Source Key parameters that can be manipulated 

Safe Air Spaces 

Oregon Institute for Health in the Built Environment 

Risk of SARS-CoV-2 transmission considers “high” or “low” viral emitter, 

number of occupants sharing air, ventilation, extra air cleaning from filtration. 

Portable Air Cleaner Calculator for Schools v1 

Harvard-CU Boulder 

Considers the number of people and size of space, and risk of SARS-CoV-2 

transmission; provides suggestion for how to increase effective air exchange 

rate through use of portable air cleaning devices. 

COVID-19 Aerosol Transmission Estimator 

Jose Jiménez CU-Boulder 

  

Aerosol transmission calculator. Considers infectious dose emission rate 

(quanta), inhalation rate, mask efficiencies for source. control and PPE, 

building ventilation rate, biological decay of virus and aerosol deposition onto 

surfaces, chance of encountering an infectious person, proportion of population 

immune. 

Visualization by El País using the Jiménez aerosol transmission estimator. 

Estimation of COVID-19 infection risk from airborne 

transmission during classroom teaching 

Duke University 

Adding probabilistic Monte Carlo approach to Jose Jiménez transmission risk 

estimator. 

Airborne infection risk calculator 

International collaborators (USA, Italy, Australia), hosted 

by CUNY 

Estimates risk as a function of time, viral inactivation/removal, room volume, 

number of infectious occupants, breathing level based on activity, and 

estimated quanta generation level based on comprehensive analysis of 

published findings. 

COVID-19 Risk Calculator 

Harvard Healthy Buildings 

Estimates risk based on model described in analysis of Diamond Princess cruise 

ship outbreak. Model adjusts risk based on room size, length of exposure, 

activity type, and controls including face mask use, distancing, ventilation, air 

cleaning, hand washing, and room cleaning. 

FaTIMA (Fate and Transport of Indoor Microbiological 

Aerosols) 

NIST 

  

Multizone modeling tool to help predict viral aerosol exposure given exposure 

within a building. Considers ventilation from building infiltration and 

mechanical sources, system filtration, portable air cleaner use. Describes 

exposure and does not make assumptions about the relationship between 

exposure and infection risk. (Documentation) 

Equivalent outdoor air calculator 

ASHRAE 

Estimates total equivalent air changes per hour in a space and the flush-out time 

to achieve 3 air changes per hour. The goal of the flush-out is to reduce 

exposure to contaminants that build up over time with occupants. 

Ventilation calculator 

REHVA 

Estimates the effect of ventilation on SARS-CoV-2 transmission risk. 

COVID Exposure Assessment Tool (CEAT)  

Signature Science, LLC 

Considers near-field and far-field exposure associated with numerous factors, 

including community infection prevalence and adherence to distancing 

measures. Benchmarks risk associated with inhalation exposure using OSHA 

“high risk” classification. 

https://safeairspaces.com/
https://tinyurl.com/portableaircleanertool
https://docs.google.com/spreadsheets/d/16K1OQkLD4BjgBdO8ePj6ytf-RpPMlJ6aXFg3PrIQBbQ/edit#gid=519189277
https://english.elpais.com/society/2020-10-28/a-room-a-bar-and-a-class-how-the-coronavirus-is-spread-through-the-air.html
http://covid-exposure-modeler-data-devils.cloud.duke.edu/
https://www.cunybpl.org/resources/airborne-infection-risk-calculator/
https://covid-19.forhealth.org/covid-19-transmission-calculator/
https://www.pnas.org/content/118/8/e2015482118
https://pages.nist.gov/CONTAM-apps/webapps/FaTIMA/index.html
https://nvlpubs.nist.gov/nistpubs/TechnicalNotes/NIST.TN.2095.pdf
https://docs.google.com/spreadsheets/d/1GUCcjAyhzrTATHD8SQvNcF7JnuWKpadSVT6LA_8SUII/edit#gid=0
https://www.rehva.eu/covid19-ventilation-calculator
https://www.cov-irt.org/exposure-assessment-tool/
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seco-Tool 

Michael Riediker and Christian Monn; SECO (Swiss State 

Secretariat for Economic Affairs) 

Calculates concentration of aerosolized virus in a room and exposure within an 

arm’s length (60cm) and at room-scale. Considers mask use, variable source 

emission, physical activity, speech, and room size, air exchange, and air flow 

velocity. 

Facility Infection Risk Estimator v2.1 

BranchPattern 

Estimates number of infected adults and children per exposure scenario. Can 

build exposure scenarios based on age, activity level, room size, use of GUV, 

air exchange, filtration, exposure time, level of viral shedding into exhaled 

breath, mask use. Translates disease estimates into economic value, and 

associated, hypothetical reproductive ratio values.  

Why Is the Risk of Coronavirus Transmission so High 

Indoors? Article with visualization and tool. 

Zeit Online Publication with advising from a Max Planck 

Institute for Chemistry research team (Jos Lelieveld et al. 

2020) 

Estimates transmission given available evidence and assumptions regarding 

generation of infectious aerosols including through speech, speech volume, 

singing, coughing, mask efficiency, room size, air exchange rate, and 

occupancy density, and length of exposure. The concentration of infectious 

virus contained in respiratory lining fluid is used to estimate infectious material 

concentration in aerosols. Measured concentrations of exhaled breath particles 

are used.  

An analysis of three Covid-19 outbreaks: how they 

happened and how they can be avoided.  

El País in collaboration with numerous public health 

agencies advising. 

Provides visual models of documented transmission of SARS-CoV-2 in an 

office, a restaurant, and a bus. Provides suggestion for mitigating transmission 

based on the hierarchy of controls. 

City reduced probability of infection for indoor airborne 

transmission of COVID-19.  

Concordia 

Draws on the Jiménez transmission estimator and building archetypes to infer 

infection transmission risk at the building level across Canada and the United 

States. 

 

Appendix 2: Details of the aerosol transfer model in an office 

A CONTAM simulation was performed to estimate respiratory aerosol concentrations a) in the 

infector subzone (close-interactive transfer), b) in a well-mixed room space occupied by the 

infector, that is supplied by, separately, SZ and MZ HVAC systems, and c) in a separate room 

connected by the MZ system (described in main text). The schematic for the MZ and SZ 

simulations showing airflows and aerosol deposition is given by Figure A1. The filtration 

efficiencies of the MERV13 filter and MERV8-like cloth masks for each aerosol size bin used in 

the model are given by Table A2. We used a mass balance approach to compute respiratory 

aerosol concentrations mediated by pressure and flow in the theoretical office space at the 

transfer scales of interest, described by 

 
𝑑𝐶𝑖

𝑑𝑡
=  

𝑆𝑖̇

𝑉
− (𝜆 + 𝜅𝑖 + (1 − 𝑂𝐴)

𝑄𝐻𝑉𝐴𝐶

𝑉
 𝜂𝑖) 𝐶𝑖,      

 (3) 

where subscript i denotes respiratory droplet size bin, with C respiratory aerosol droplet 

concentration (number or volume) in air, 𝑆̇respiratory aerosol number generation strength, V 

indoor space volume, 𝜆 ventilation rate, 𝜅 deposition rate, OA outdoor air fraction, 𝑄𝐻𝑉𝐴𝐶 HVAC 

mechanical flow rate, and 𝜂filter efficiency. One minute injections of source aerosol were 

considered in the simulation for 60 consecutive minutes with constant HVAC air delivery. 

Details to guide reproduction of the CONTAM simulation are described at 

https://gitlab.com/jacobbueno/building_controls_for_infectious_aerosols.  

 

https://aaqr.org/articles/aaqr-20-08-covid-0531
https://branchpattern.com/research/facility-infection-risk-estimator/
https://www.zeit.de/wissen/gesundheit/2020-11/coronavirus-aerosols-infection-risk-hotspot-interiors
https://www.mpic.de/4747361/risk-calculator?en
https://english.elpais.com/spanish_news/2020-06-17/an-analysis-of-three-covid-19-outbreaks-how-they-happened-and-how-they-can-be-avoided.html
https://english.elpais.com/spanish_news/2020-06-17/an-analysis-of-three-covid-19-outbreaks-how-they-happened-and-how-they-can-be-avoided.html
https://concordia-cityrpi.web.app/
https://concordia-cityrpi.web.app/
https://gitlab.com/jacobbueno/building_controls_for_infectious_aerosols


56 

Figure A2 depicts the volume (top panel) and aerosol particle number (bottom panel) 

concentrations at each scale of transfer. As expected, and based on Figure 1 (main text), the 

concentrations of respiratory aerosols are higher in the close-interactive scale (SZ infector 

subzone space), compared with the other aerosol transfer scales. Based on the available 

knowledge of respiratory aerosols generated during speech (Table A1) 82,177, the model predicts 

the highest volume concentrations for the close-interactive and room scale exposures at the upper 

end of the modeled particle diameters of approximately 14 µm.  It predicts the highest number 

concentration for all scales at approximately 1 µm. A single log10 increase in diameter 

corresponds with a 3 log10 increase in volume for an aqueous sphere. The volume and number 

concentrations drop sharply at approximately 5 µm for the building scale transfer, due to an 

increasing role of deposition in removal, suggesting a meaningful role of deposition in the lower 

building scale transfer compared with the other scales.   

 

Table A2. Input values for CONTAM model 

 

Mask filtration efficiency 

(% particles captured) 

Equilibrated 

size 

Initial 

size 

Number Distribution a 

(released / min) 

Deposition b 

(% removed / h) MERV 13 Out-Flow In-Flow 

0.3 0.5–1.0 74 1.20E-01 0.498 39.94 21.74 

0.6 1–2 1129 6.00E-02 0.528 57.81 30.92 

1.2 2–4 1176 2.80E-01 0.592 71.66 52.18 

2.4 4–8 537 0.84996 0.754 81.97 67.79 

4.8 8–16 133 2.30004 0.953 87.14 78.75 

8 16–24 48 4.5 0.990 87.14 85.04 

11.2 24–32 34 8.1 0.995 87.14 87.14 

14.4 32–40 31 12.9996 0.998 87.14 87.14 

a For continuous speaking. b Deposition on surfaces in the room and in the HVAC system. 
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Figure A1. Model schematics. Single zone (SZ; top panel) and multizone (MZ; bottom panel) 

aerosol transfer model office spaces.  
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Figure A2. Volume and number concentrations at scales of transfer by equilibrated respiratory 

aerosol size. The volume concentration distribution by equilibrated particle size is given in pL 

respiratory volume per L air (top panel). The number concentration distribution by equilibrated 

particle size is the number of aerosol particles per L air (bottom panel). The eight equilibrated 

particle size bins correspond to those in Table A2. The top band of each shaded region 

corresponds to an unmasked scenario (no mask on both infector and susceptible) and the bottom 

band corresponds to a scenario where both infector and susceptible are wearing cloth masks.  

Appendix 3: Source control and personal protective equipment (PPE)  

Reduce the chances of an infectious person being present 

Reducing or eliminating the source of a hazard is the most effective approach per the hierarchy 

of controls 322. For airborne pathogens, the aim is to reduce the chance that an infectious person 

will enter a communal indoor space; and if they do enter, to minimize their emissions. This 

approach is particularly challenging when asymptomatic individuals can transmit infectious 

quanta, as occurs with SAR-CoV-2 44,45,47. Source controls include capacity and duration limits, 

symptom screening, contact and risk factor questionnaires to identify those with recent exposure 

in high risk settings, frequent testing, separation of cohorts (e.g., via scheduling in school) to 

limit contacts, and ventilation flushing or air cleaning via filtration or GUV between sequential 

occupancies of indoor spaces.  

 

Reduce emissions from infectious occupants 
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Source control aims to reduce the release of infectious aerosols, sprays, or surface contamination 

to interrupt transmission modes when infectious status is known or unknown, works across all 

scales of control, and can enable lower risk even when other controls may be inadequate. 

Activity control, including reducing vocalization, shouting, singing, activities that elicit heavy 

breathing, can reduce the quantity of infectious aerosols generated, as described earlier. Face 

masks have demonstrated effectiveness at reducing the release of infectious aerosols of various 

sizes of concern for inhalation exposures 98,323–326. In addition to their filtering capacity, face 

masks also reduce the velocity of expired air streams, thus reducing the likelihood of direct 

transfers of infectious aerosols at high concentrations. Aerosols that escape a face mask often 

become entrained in thermal plumes rising upward out of the breathing zone, although natural 

ventilation or mechanically driven air movement also influence aerosol dispersal and transport. It 

is unclear how respirators with exhalation valves affect respiratory jets, although they are likely 

to reduce outward velocities to some degree. Face mask use among the public has been 

characterized as an effective layer of protection against SARS-CoV-2 community transmission 
327–330.  

 

Reduce exposure with PPE  

Individuals who spend time in settings with known or potential risk can use PPE to reduce or 

eliminate exposure to infectious aerosols, ballistic drops, and contaminated surfaces. Face masks 

can serve as PPE, reducing inhalation exposure to infectious aerosols 67. The effect can be 

increased if multiple layers are used and the seal around the face is tightened 323. Given that 

SARS-CoV-2 genomes have been detected in aerosols in PPE doffing areas 92, care should be 

taken to protect against doffing-associated exposure that could lead to infection. A meta-analysis 

of epidemiologic studies showed associations with surgical mask or respirator use with reduced 

infection risk of approximately half or more in healthcare and non-healthcare settings 331. There 

still can be substantial risk of infection via aerosols despite surgical mask use, as has been noted 

in healthcare settings 166, which could be mitigated by well-fitted respirators that more 

effectively reduce aerosol inhalation 167. Some epidemiological studies showed a protective 

effect of eye protection 165.  

Appendix 4: Guidelines regarding building ventilation  

Organizations have provided guidance for ventilation to control respiratory infections, and 

recently, SARS-CoV-2 (e.g., http://ashrae.org/covid19). There has been widespread 

acknowledgement of infectious aerosols contributing to the spread of infection epidemic, which 

has spurred efforts to advise building operators on infection control actions. Given the challenges 

of developing precise ventilation standards to effectively reduce airborne infection (specific 

beyond “more ventilation is better”), the collective wisdom of infectious disease experts and 

building engineers generally emphasizes some level of increased ventilation to mitigate SARS-

CoV-2 spread, while maintaining thermal comfort, to reduce airborne transmission risk 40,332,333. 

Upgrading HVAC filters to MERV13 or better, using portable air cleaners (with MERV13 filters 

or better), and using upper room germicidal UV (GUV) are also suggested to enhance infection 

control.  

 

The Federation of European Heating, Ventilation, and Air Conditioning Associations (REHVA) 

recommends airborne infection isolation rooms (AIIR) to have at least 6–12 ACH, with new 
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builds having ≥12 40. REHVA suggests upgrading ventilation in any healthcare wards with 

infectious disease cases to match AIIR levels, and at least 4 ACH in other zones of healthcare 

facilities. The American Society of Heating, Refrigeration, and Air-Conditioning Engineers 

(ASHRAE) goes beyond this in Standard 170, advising at least 12 ACH in healthcare settings, 

regardless of aerosol generating procedure 212. For school health clinics, ASHRAE provided 

guidance ranging from 6–10 ACH 334, and equivalent ventilation rates are still being researched 

by the Epidemic Task Force. This is generally higher than the non-pandemic standards. 

 

REHVA shows how increasing ventilation above 1L/s/m2 can reduce airborne infection risk and 

that 4L/s/m2 may be advisable as a lower bound in office meeting rooms or classrooms 

(corresponding to 5ACH) 40. They classify maintenance of indoor CO2 levels below 800 and 

1,000ppm (given outdoor CO2 level of 400ppm) as “good” and “acceptable” ventilation, 

respectively. WHO suggested 5–6 ACH for public buildings in the context of SARS-CoV-2 

pandemic control 42,43. This is similar to what has been suggested in the US for holding K–12 

school during the pandemic with 6 ACH as ideal, 5–6 as excellent, 4–5 as good, and 3–4 as bare 

minimum 38. Guidelines are expected to evolve as understanding of ventilation infection control 

effectiveness increases. Ventilation is considered a helpful control within the context of other 

layers of protection including, in the context of the COVID-19 pandemic, use of face masks, 

physical distancing, de-densifying indoor spaces, upgrading filters in central HVAC systems, 

using portable air cleaners, deploying GUV, and considering air flow dynamics to reduce 

exposure to infectious aerosols.  

 


